Thursday, 12 February 2026

The Bell Beaker Migration: Unravelling Britain's Bronze Age Transformation and the Stonehenge Enigma

In a landmark study published in Nature on 11 February 2026, researchers have illuminated the genetic origins of the Bell Beaker culture, tracing its roots to the Rhine-Meuse region of modern-day Netherlands, Belgium, and western Germany. This work reveals how persistent hunter-gatherer ancestry in that wetland area mingled with incoming Corded Ware populations around 2500 BCE, forming a dynamic group that would profoundly influence northwestern Europe. For Britain, the implications are particularly striking, marking a near-total genetic overhaul that heralded the Bronze Age. While media headlines often dramatise this as the 'replacement' of Stonehenge's Neolithic builders by continental immigrants, a closer examination uncovers a nuanced tale of migration, cultural continuity, and demographic shifts—far from simplistic narratives of conquest or catastrophe.

Britain's Genetic Revolution: From Neolithic Farmers to Bell Beaker Dominance

Britain's Neolithic era, spanning approximately 4000 to 2500 BCE, was characterised by communities descended from Anatolian farmers who had migrated via continental Europe, constructing monumental sites and sustaining agrarian societies. Around 2400 BCE, however, Bell Beaker groups—now genetically linked to the Rhine-Meuse admixture—crossed the Channel, introducing a blend of high hunter-gatherer ancestry (13–18% from local Rhine-Meuse sources) and steppe-derived elements from earlier Yamnaya pastoralists via the Corded Ware complex. Genetic analyses indicate that these newcomers contributed 90–100% of the ancestry in Britain's subsequent Early Bronze Age populations, effectively supplanting the Neolithic genetic profile within centuries.

This shift was more pronounced in Britain than elsewhere in Europe, ushering in innovations such as metalworking, individual burials with distinctive bell-shaped pottery, and possibly early Celtic linguistic roots. The Rhine-Meuse wetlands, with their resilient mixed economies of foraging and limited agriculture, provided a unique cradle for this expansion, enabling Bell Beaker groups to thrive and spread. Contemporary discussions on platforms like X have drawn parallels to modern migration debates, though such analogies risk oversimplifying prehistoric dynamics.



Stonehenge: A Monument at the Crossroads of Eras

At the heart of this transition stands Stonehenge, the Wiltshire megalith that symbolises Britain's prehistoric heritage. Erected in stages from around 3000 BCE by Neolithic farmers, its primary sarsen circle and trilithons were completed circa 2500–2400 BCE, coinciding with the initial Bell Beaker incursions. The study confirms that the monument's original architects—descendants of Anatolian migrants—were largely displaced genetically by these Rhine-Meuse-derived arrivals. Yet, Stonehenge was not forsaken; archaeological evidence suggests the Bell Beaker people adapted and utilised it, potentially modifying elements for their own rituals.

A notable example is the Amesbury Archer, interred near Stonehenge around 2300 BCE with opulent artefacts including gold ornaments, copper implements, and archery gear. Isotopic studies reveal his Alpine upbringing, positioning him as a genetic outlier with reduced steppe ancestry, but the wider British Bell Beaker cohort mirrors the Rhine-Meuse signature. Burials clustered around the site indicate continued ceremonial importance, with solstice alignments persisting amid new practices. As highlighted in Bournemouth University's commentary, the Neolithic lineages behind Stonehenge 'seem to have almost completely vanished' after 2500 BCE, yet the monument's evolution—evidenced by Bell Beaker-era dagger carvings on its stones—points to cultural blending rather than abrupt rupture. Online discourse, such as posts from accounts like @ST0NEHENGE, underscores Stonehenge's role in this narrative, amplifying its enduring allure.

Debunking the 'Great Replacement': Genocide, Disease, or Data Limitations?

The phrase 'great replacement'—evocative of modern polemics—describes the observed 90–100% ancestry turnover, but the study refrains from attributing causes, emphasising patterns over speculation. Was this genocide? Direct proof is absent; while Bronze Age Europe witnessed sporadic violence, Britain's sites lack mass graves or widespread trauma indicative of systematic extermination. Geneticist David Reich has suggested such shifts could stem from conflict, but also from differential reproduction, such as patrilocal systems favouring incoming males—a pattern seen in the disproportionate replacement of Y-chromosomes. Comparisons to later events, like the Anglo-Saxon influx, favour models of assimilation over annihilation.

Alternative explanations abound. A 2024 study implicates ancient plagues like Yersinia pestis in Neolithic population crashes, potentially weakening locals before Bell Beaker arrival, akin to colonial-era epidemics in the Americas. Bell Beaker advantages—mobility via horses, metallurgical skills, and traits like lactose persistence—likely boosted their demographic success. Shared cultural elements, such as megalithic traditions, hint at integration rather than erasure.

Critics question if this is an artefact of sampling bias: ancient DNA derives from burials representing a minuscule fraction (<0.1%) of populations, often elites in prominent sites. Yet, the consistency across over 400 British samples from varied contexts—farms, caves, and barrows—bolsters the turnover model. Reich acknowledges limitations but affirms the robustness of regional patterns. Forums like Reddit and X reflect this caution, urging against overinterpreting data amid ongoing discoveries.

Ultimately, this Bell Beaker saga reframes Britain's prehistory as a mosaic of environmental adaptation, migration, and resilience. Stonehenge endures as a testament to continuity amid change, reminding us that ancient population dynamics defy easy categorisation. As research evolves, it challenges us to approach such stories with nuance, bridging the gap between sensational headlines and scholarly depth.

Unveiling the Persistent Hunter-Gatherer Legacy in Europe's Rhine-Meuse Delta

A groundbreaking study published in Nature on 11 February 2026 has shed new light on the genetic history of prehistoric Europe, particularly in the wetland regions of the modern-day Netherlands, Belgium, and western Germany. Titled "Lasting Lower Rhine–Meuse forager ancestry shaped Bell Beaker expansion," the research, led by Iñigo Olalde and a team of over 40 international collaborators, analysed ancient DNA from 112 individuals spanning 8500 to 1700 BCE. The findings reveal a remarkable persistence of hunter-gatherer ancestry in this Rhine-Meuse delta area, where local populations maintained approximately 50% forager genetic heritage—far higher than in most of continental Europe—up to three millennia after the arrival of early farmers from western Anatolia around 6500 BCE.

Figure 4.

Hunter-gatherer ancestry proportions across Europe between 4500-2500 BCE, estimated using qpAdm. a) Spatial kriging of hunter-gather ancestry. The colors represent the predicted ancestry proportion at each point in the grid. b) Hunter-gatherer ancestry levels in individuals from different European regions.


This high level of hunter-gatherer continuity is attributed to the region's unique ecology, including wetlands and coastal zones ill-suited to the intensive farming practices of the Linearbandkeramik culture. Instead, communities here incorporated limited female farmer ancestry while preserving mixed lifeways that blended foraging with partial agriculture. The study highlights how this distinct genetic profile endured until around 2500 BCE, when the Corded Ware complex introduced steppe ancestry, leading to the formation of Bell Beaker groups through admixture: local Rhine-Meuse people contributed 13–18% ancestry, fused with incoming Corded Ware migrants of both sexes. These Bell Beaker populations then expanded, profoundly impacting northwestern Europe, including Britain, where they drove a near-total (90–100%) replacement of Neolithic ancestry, marking the onset of the Bronze Age.

The revelations underscore the role of environmental niches in shaping human migration and cultural evolution, challenging broader narratives of uniform population turnover across Europe. However, accessing these insights is frustratingly restricted. The full article in Nature (DOI: 10.1038/s41586-026-10111-8) sits behind a paywall, requiring institutional access or payment, which limits public engagement with primary science at a time when open knowledge should be prioritised. Fortunately, a preprint version is freely available on bioRxiv (posted 25 March 2025, DOI: 10.1101/2025.03.24.644985) and in PubMed Central, offering the accepted manuscript under a CC BY 4.0 licence. Raw data, including genotypes and DNA sequences, can be obtained from the Reich Lab's Harvard Dataverse repository and the European Nucleotide Archive (accession PRJEB105335), enabling further research.

Equally disheartening is how popular news coverage, such as articles in Phys.org and Nature's own news section, often summarises the findings without guiding readers to these open resources or the original data. This omission perpetuates a barrier between sensational headlines—like claims of "surprising origins" of Britain's Bronze Age immigrants—and the rigorous, verifiable science beneath, leaving enthusiasts to hunt for details themselves. In an era of misinformation, clearer signposting to primary sources in media reports would democratise discovery.

  • Main Academic Paper: Olalde, I. et al. (2026). Lasting Lower Rhine–Meuse forager ancestry shaped Bell Beaker expansion. Nature. DOI: 10.1038/s41586-026-10111-8.URL: https://www.nature.com/articles/s41586-026-10111-8   Author provided access - https://www.nature.com/articles/s41586-026-10111-8.epdf?sharing_token=tE6R2qWBL5dGPoMyFpTj4tRgN0jAjWel9jnR3ZoTv0NppUPBJX-KqUtdLg1ZB1p6i2FTkamw8iLRHhvoN_BJTKOGkbg0mTxraEKVBbQpD907M8h-NcYWcoEDEh3sjvv7UpRuVxiUB2uAzv5ZhHfZfTm_GHRA5DqycpSZTEqNvLI%3D
  • Preprint Version: Olalde, I. et al. (2025). Long-term hunter-gatherer continuity in the Rhine-Meuse region was disrupted by local formation of expansive Bell Beaker groups. bioRxiv. DOI: 10.1101/2025.03.24.644985.URL: https://www.biorxiv.org/content/10.1101/2025.03.24.644985v1 (freely accessible under CC BY 4.0 licence)
  • PubMed Central Version: Olalde, I. et al. (2026). Long-term hunter-gatherer continuity in the Rhine-Meuse region was disrupted by local formation of expansive Bell Beaker groups. PMC. PMC11974744.URL: https://pmc.ncbi.nlm.nih.gov/articles/PMC11974744 (accepted manuscript, open access)
  • ResearchGate PDF: Olalde, I. et al. (2025). Long-term hunter-gatherer continuity in the Rhine-Meuse region was disrupted by local formation of expansive Bell Beaker groups.URL: https://www.researchgate.net/publication/390165125_Long-term_hunter-gatherer_continuity_in_the_Rhine-Meuse_region_was_disrupted_by_local_formation_of_expansive_Bell_Beaker_groups (PDF download available)
  • Genotype Data Repository: Reich Lab Datasets (Harvard University).URL: https://reich.hms.harvard.edu/datasets (includes data from this study)
  • Raw DNA Sequences Archive: European Nucleotide Archive (ENA), accession PRJEB105335.URL: https://www.ebi.ac.uk/ena/browser/view/PRJEB105335
  • Phys.org News Article: Ancient DNA suggests hunter-gatherers in Europe's lowlands endured until 2500 BCE.URL: https://phys.org/news/2026-02-ancient-dna-hunter-europe-lowlands.html
  • Nature News Article: Hunter-gatherers took refuge in European 'water world' for millennia.URL: https://www.nature.com/articles/d41586-026-00440-z
  • New Scientist Article (basis for the original linked piece): The surprising origins of Britain's Bronze Age immigrants revealed.URL: https://www.newscientist.com/article/2515260-the-surprising-origins-of-britains-bronze-age-immigrants-revealed
  • Wednesday, 11 February 2026

    A Speculative Hypothesis: Neolithic Cattle Traction in the Transport of Bluestones to Stonehenge – Insights from Isotopic Analysis and Veterinary Parallels

    Abstract

    Recent isotopic analysis of a Neolithic cow tooth excavated from Stonehenge's ditch, dated to approximately 3350–2920 BC, reveals a migratory journey mirroring that of the bluestones, with a pronounced lead (Pb) spike interpreted conventionally as metabolic stress from calving. This paper proposes an alternative speculative hypothesis: the cow may have been employed in draught labour for bluestone transport, with the lead spike resulting from bone mobilisation during fracture healing induced by ill-fitting harnesses. Drawing on veterinary studies of lead dynamics in mammals, archaeological evidence for early cattle traction in Neolithic Europe, and parallels from modern draft animals, this interpretation aligns locations, timings, and ritual depositions at Stonehenge. While speculative, it fits available evidence and suggests avenues for future research, including palaeopathological examinations of cattle remains and experimental reconstructions of Neolithic harnessing.


    Introduction

    Stonehenge, constructed in phases between circa 3000 BC and 1500 BC, stands as a testament to Neolithic engineering prowess and social organisation. Its inner circle comprises bluestones—predominantly dolerite, rhyolite, and volcanic tuff—sourced from the Preseli Hills in Pembrokeshire, Wales. The mechanism of their transport has sparked debate: human agency via overland sledges or rafts, glacial entrainment by the Irish Sea Ice Stream, or a combination thereof. Proponents of human transport emphasise communal labour and symbolic motivations, while glacial theories highlight geological alignments and the absence of direct haulage evidence.

    Recent multi-isotopic analysis of a Bos taurus third molar (M3) from Stonehenge's south entrance ditch, conducted by Evans et al. (2025), provides a biographical snapshot of a female cow's life circa 2995–2900 BC, coinciding with Stonehenge's initial phase. Strontium (Sr), oxygen (O), carbon (C), and lead (Pb) isotopes trace a journey from radiogenic Welsh terrains to chalky Wessex pastures, with a sharp Pb spike suggesting physiological stress. Conventionally attributed to lactation or calving, this spike may alternatively indicate trauma from draught work, particularly if harness-induced injuries led to bone remodelling.

    This hypothesis integrates isotopic data with veterinary insights into lead mobilisation during fracture healing and archaeological evidence for Neolithic cattle traction. It posits that cattle, revered in Neolithic societies, served dual roles in labour and ritual, potentially hauling bluestones before ceremonial deposition. While speculative, it offers a coherent narrative fitting chronological, geographical, and cultural evidence.

    The Neolithic Cow Tooth Evidence: Isotopic Analysis and Geographical Mobility

    The tooth in question, an M3 from a female Bos taurus jawbone, was excavated in 1924 and radiocarbon-dated to 3350–2920 BC, aligning with Stonehenge's Phase 1 construction. Sequential sampling of nine enamel slices captured six months of growth from winter to summer in the cow's second year. Strontium isotopes (⁸⁷Sr/⁸⁶Sr) shifted from high values indicative of Palaeozoic rocks in Wales (e.g., Preseli Hills) to lower ratios typical of Cretaceous chalk in Wessex. Oxygen and carbon isotopes reflected seasonal dietary transitions from woodland to open grassland, supporting transhumance or directed movement.

    A notable Pb isotope spike in late winter–spring slices suggests mobilisation from skeletal stores, conventionally linked to reproductive demands. The jawbone's deliberate placement implies ritual significance, akin to feasting deposits near Stonehenge involving distant-sourced animals. This geographical and temporal congruence with bluestone provenance invites speculation on the cow's role in transport.

    Interpreting the Lead Spike: Alternatives to Reproductive Stress

    Lead, stored predominantly in bone (over 90% in adults, 75% in juveniles), mobilises during heightened bone turnover, such as pregnancy, lactation, or fracture healing. Veterinary and toxicological studies confirm that fractures accelerate resorption via osteoclast activity, releasing Pb into circulation and incorporating it into forming enamel. In lead-exposed animals, fractures delay healing and exacerbate mobilisation, as seen in rodent models where tibial fractures increased systemic Pb levels. Neolithic environments, with natural Pb from soils, would amplify this effect.

    While lactation remains plausible, the spike's timing and intensity could reflect trauma from haulage. Ill-fitting harnesses in draft animals cause pressure lesions, gait abnormalities, and fractures, leading to bone remodelling. In Neolithic contexts, rudimentary yokes or collars could induce such injuries, mobilising Pb during repair. This alternative fits the cow's young age and migratory pattern, suggesting labour-induced stress.

    Harness-Related Injuries and Bone Damage in Draft Animals

    Archaeological and veterinary evidence demonstrates that poorly fitted harnesses inflict significant damage on draft animals. Bronze Age chest harnesses, used for horses and cattle, often caused pressure sores, spinal lesions, and joint degeneration. Neck collars, common in oxen, exacerbate orthopaedic issues, with studies showing higher pathology rates in collared animals. In Neolithic Britain, yoke fragments and bone pathologies indicate similar practices. These injuries, including micro-fractures, could trigger Pb spikes in enamel.

    Evidence for Cattle Traction in Neolithic Contexts

    Palaeopathological and biometric data from sites like Çatalhöyük (Anatolia) and Knossos (Crete) indicate cattle traction from the 7th millennium BC. In Britain and Ireland, mid-4th millennium BC evidence from Kilshane and Etton suggests specialised husbandry for draught oxen. Sub-pathological alterations in cattle phalanges from Western Balkans sites (6100–4500 BC) support light traction. Applied to Stonehenge, this implies cattle could haul multi-tonne bluestones, as proposed in recent models.

    Integrating the Evidence: A Haulage Hypothesis

    Synthesising these strands, the cow's Welsh origin, migratory path, Pb spike, and ritual deposition align with bluestone transport. Harness-induced fractures could explain the spike via bone mobilisation, with the cow's youth suggesting intensive use. Neolithic reverence for cattle, evident in symbolism and feasting, may culminate in sacrificial deposition post-labour. This hypothesis counters glacial theories by emphasising human-animal collaboration.

    Modern Analogies

    Modern analogues from ox pulling contests illustrate the substantial hauling capacity of yoked cattle, supporting the plausibility of Neolithic draught use for multi-tonne bluestones, while also highlighting welfare risks from intensive labour and harnessing. In contemporary North American events, rooted in 19th-century agricultural practices and formalised at fairs since the early 20th century, pairs of oxen—typically weighing 1,500–3,400 lbs and categorised by weight classes—can pull loads exceeding three times their body weight for short distances, such as a 1,994 lb team dragging 6,400 lbs (3.2 times their mass) or heavier teams managing 14,000 lbs. Well-conditioned oxen sustain drafts of 10–12% of their body weight over extended periods, with pairs synergistically amplifying output (e.g., a single ox pulling 5,000 lbs versus a yoke achieving 15,000 lbs), echoing archaeological evidence of early traction and experimental reconstructions for megalith transport. Historical Basque 'idi probak' and Sankranti Ox pulling contests in Narayanapuram, Anantapur district of India provide more examples.

    Implications and Future Research

    This interpretation enriches understandings of Neolithic mobility, economy, and ritual, highlighting integrated human-animal systems. Future studies could examine cattle bones for traction pathologies, simulate harness effects on Pb mobilisation, and model bluestone haulage with oxen teams. Comparative isotopic analyses from Welsh sites may reveal herd patterns.

    Conclusion

    Though speculative, this hypothesis—that a Neolithic cow hauled bluestones, suffering harness-induced injury recorded in enamel Pb—coherently integrates evidence. It underscores the multifaceted roles of cattle in prehistoric societies, bridging labour and symbolism, and invites rigorous testing to refine Stonehenge's narrative. 

    References


    Thursday, 5 February 2026

    The Stones of Britain

    I highly recommend this book I have just read: Simply beautifully written and informative, new light on familiar places and insights into new places. But not a text book, a lovely memoir. 



    The Stones of Britain

    A History of Britain through its Geology

    Jon Cannon 

    "This is the definitive tale of how our island history is written in stone.

    The Stones of Britain is about how rocks make places, exploring the connection between geology and landscape, the stones beneath the surface and the history that has played out above it. It movingly investigates the diverse character of the British landscape, and the rich variety of places that have come to be as a result.

    We discover that the shattered granite landscape of Dartmoor is different from the soft red sandstone hills of east Devon; the rolling chalk downs distinct from the gritty moors of Yorkshire - and each has a unique, fascinating story to tell.

    Interweaved with beautiful meditations on place, home and belonging, The Stones of Britain interprets these stories. It explains the nature of place on the island of Britain, revealing the landscape as the joint product of geology and man: an extraordinary history rooted in stone.

    Jon Cannon (1962-2023) was an architectural historian, lecturer and Canon Historian for Bristol Cathedral, and also worked for the Royal Commission on the Historical Monuments of England and English Heritage. Unfortunately Jon passed away in the process of making this book, but his passion for landscape, history and culture lives on and leaps defiantly off the page - culminating in a richly researched and hugely special offering."

    Sunday, 1 February 2026

    Was the Wansdyke a Canal?

     

    Click to enlarge
    https://explore.osmaps.com/route/30489348/wansdyke?lat=51.39462&lon=-1.89988&zoom=12.2788&style=Leisure&type=2d

    Short answer: No.

    Long answer: Still no, Robert John Langdon and the "Prehistoric Britain" community (including their Facebook posts and self-published works), posits that this massive dyke was not a fortification but a prehistoric canal or water-filled ditch, dating back to around 5500 BCE or earlier. Drawing on hydrological modelling, LiDAR scans, and claims of minimal silting, proponents argue it served as a navigable waterway linking river systems like the Thames and Bristol Channel during a wetter post-Ice Age era.

    This article examines the specific section of East Wansdyke between Shepherd's Shore and West Woods—approximately 16.5 kilometres of undulating ridgeway terrain—and evaluates the canal theory's feasibility. By extracting and analysing elevation data from topographic sources, including Ordnance Survey maps and hiking routes, we reveal why this interpretation is not merely improbable but, to put it bluntly, batshit crazy: a pseudoscientific flight of fancy that ignores physics, geology, and established evidence.

    Mapping the Terrain: Elevations Along the Shepherd's Shore to West Woods Section

    East Wansdyke's segment from Shepherd's Shore (near the A361 crossing, grid reference SU047661, coordinates 51.394°N, 1.933°W) to West Woods (approximate central coordinates 51.396°N, 1.777°W) traverses the northern edge of the Marlborough Downs, a chalk ridge characterised by dramatic contours and dry valleys. This 10–12 kilometre stretch (extended to 16.56 kilometres in some hiking paths that follow the dyke's remnants) is far from level, featuring bold curves, irregular ascents, and descents that hug the landscape rather than cutting through it like a purposeful canal might.

    Based on topographic data from Ordnance Survey maps, LiDAR imagery, and walking routes such as the Wansdyke Path and Mid Wilts Way, the elevations vary significantly:

    • Shepherd's Shore (start point): Approximately 175–200 metres above ordnance datum (AOD), starting at around 181 metres in detailed route profiles. This marks the western entry onto the downs, at the foot of rising ground.
    • Ascent to Tan Hill: The dyke climbs steadily and sinuously to Tan Hill (grid reference SU085679), peaking at 294 metres AOD—one of Wiltshire's highest points. This involves a net rise of about 110–120 metres over several kilometres, with multiple undulations.
    • Milk Hill area: Continuing eastward, the path reaches the plateau near Milk Hill at 295 metres AOD (the county's summit). Here, the terrain plateaus briefly but includes sharp drops into dry valleys before re-ascending.
    • Descent toward West Woods (end point): The elevation gradually falls to 160–200 metres AOD, averaging 197 metres with lows around 163–172 metres in the forested eastern sections. The final drop is notable, navigating steeper slopes and crossing farm tracks.

    Overall, the profile resembles a rollercoaster: a total ascent of 352 metres (with equivalent descent, yielding a net drop of just 9 metres across the full 16.56-kilometre route). It ascends and descends at least five to six times, crossing dry valleys and high ridges with slopes of 2–5% in places. The minimum elevation dips to about 172 metres at the eastern end, while the maximum touches 295 metres at Milk Hill. These figures, confirmed via OS Maps and hiking apps, underscore the hilly, ridge-hugging nature of the earthwork—ideal for visibility and defence, disastrous for water retention.

    The Canal Theory: Intriguing Yet Fundamentally Flawed

    Proponents of the prehistoric canal hypothesis cite several features to support their claim. They highlight the dyke's V-shaped ditch (up to 2.5 metres deep with a 4-metre-high southern bank), flat-bottomed sections (allegedly one-third the width for water flow), minimal silting (e.g., 0.9 metres in central areas, interpreted as evidence of long-term water presence), and even fill distribution. The underlying clay-with-flints subsoil is likened to dew ponds for natural water retention, with springs, groundwater, and palaeochannels supposedly feeding the system. Hydrological modelling "dates" it to 5800–5100 BCE by extrapolating declining post-glacial water tables, arguing higher groundwater once allowed permanent flooding without locks. In this view, Wansdyke facilitated Mesolithic trade or transport, its bends adjusting for elevation and rivers occasionally flowing within it (e.g., at Sandy Lane).

    Yet, this theory crumbles under scrutiny. The topography alone renders it impossible as a functional water-filled ditch. With 100–130 metres of net elevation change and 352 metres of cumulative ascent over the section, water would not remain static or navigable—it would drain eastward rapidly, seeping into the permeable chalk or evaporating on exposed ridges. Maintaining depth would require segmented ponds, weirs, or locks every few hundred metres, feats of engineering absent from Mesolithic toolkits and unsupported by excavations. People in that era built basic wooden trackways over wetlands, not ridge-top aqueducts spanning counties.

    Geologically, the ridge location offers poor catchment; dry valleys and chalk downs ensure rapid drainage, even in wetter Holocene periods. Groundwater levels varied locally, not via a uniform decline curve applicable county-wide, and modern boreholes show tables metres below the ditch bottom. Temporary flooding might occur in heavy rain via springs, but sustained boating? Utterly unfeasible.

    Archaeologically, the evidence points squarely to a defensive or territorial role. Excavations at sites like Shepherd's Shore, Brown's Barn, and others yield Roman and post-Roman artefacts—pottery, coins, revetments—with no Mesolithic traces. Dating aligns with the 5th–6th centuries CE, possibly a sub-Roman British barrier against West Saxon incursions (ditch facing north, towards the Thames Valley threat). The name "Woden's Dyke" evokes Anglo-Saxon paganism, not Neolithic hydrology. Gaps in the earthwork (e.g., a 10-kilometre central void) and its alignment with Roman roads further undermine any continuous waterway function.

    Why It's Batshit Crazy: Pseudoscience Masquerading as Innovation

    To be rude about it—as the theory deserves—this interpretation is batshit crazy, a concoction of cherry-picked data and wishful thinking promoted through self-published books, YouTube videos, and echo-chamber Facebook groups. It reinterprets every feature as "hydraulic" (bends for water levels! Low silting for boats! Flat bottoms for flow!) while ignoring gravity, established digs, and physics. The OS Map profile, with its multiple ups and downs between 600 and 900 feet (183–274 metres), accidentally exposes the absurdity in the theorists' own materials—they acknowledge the elevations but pretend prehistoric ingenuity overcame them without evidence.

    This isn't intriguing alternative archaeology; it's physically illiterate pseudoscience, akin to claiming Stonehenge was an alien landing pad or the Earth is flat. It falls apart when confronted with real data: no locks, no consistent water source, no prehistoric parallels. Wansdyke's design—high, visible, north-facing—screams boundary marker, not transport artery.

    In conclusion, while the canal theory adds a dash of romantic speculation to Wansdyke's story, it serves best as a cautionary tale against ignoring evidence in favour of vibes. For hikers tracing this scenic path today, the real wonder lies in its enduring earthworks, a testament to ancient territorial ambitions rather than impossible aquatic engineering.

    UPDATE - I notice the Lidar in the Facebook post is of the section of the Wansdyke at Wernham Farm, Marlborough. To be fair this section has a similar elevations at both ends. But it still rises 10m in the middle and goes up and down...



    Saturday, 31 January 2026

    Advances in Stonehenge Research: A Review of Key Publications from 2025 and Early 2026

    Abstract

    Stonehenge, the iconic Neolithic monument on Salisbury Plain, continues to captivate archaeologists through innovative analytical techniques and interdisciplinary approaches. This review synthesises major publications from 2025 and early 2026, focusing on themes of stone sourcing, transport logistics, landscape archaeology, palaeoenvironmental reconstructions, astronomical alignments, and non-invasive methods for detecting hidden features. Key findings reinforce human agency in the monument's construction, highlighting extensive prehistoric networks, ritual complexities, and environmental interactions. Debates on sarsen provenances and glacial theories persist, while advancements in digital modelling address challenges like lichen obscuration. Collectively, these studies enhance our understanding of Stonehenge's role within broader Neolithic and Bronze Age societies.

    Introduction

    Stonehenge's enduring mystery has spurred a surge in research, particularly in 2025, leveraging advanced technologies such as isotope analysis, geophysical surveys, and machine learning. This article consolidates insights from recent peer-reviewed papers, emphasising deliberate human efforts in stone procurement and placement, while dispelling naturalistic explanations like glacial transport. Sections are organised thematically: bluestone and sarsen sourcing, faunal evidence, landscape features, palaeoenvironmental contexts, astronomical observations, and methodological innovations for carvings. The review draws on publications up to January 2026, reflecting the dynamic pace of discoveries.

    Bluestone Sourcing and Transport: Rejecting Glacial Hypotheses

    A cornerstone of 2025 research was the re-examination of bluestone origins, firmly attributing their presence at Stonehenge to Neolithic human endeavour rather than Pleistocene ice sheets. A pivotal study analysed the 'Newall boulder', a rhyolite fragment excavated in 1924. Using X-ray, geochemical, microscopic, and surface textural analyses, researchers concluded that the boulder exhibits no glacial erosion signatures, such as striations or polishing. Published in the Journal of Archaeological Science: Reports in July 2025, this work provides comprehensive petrological data, supporting intentional transport from Pembrokeshire, Wales, over 200 kilometres.

    Complementing this, an early 2026 publication in Communications Earth & Environment employed mineral fingerprinting of over 500 zircon and apatite grains from local river sediments. Led by Curtin University's Anthony J. I. Clarke, the analysis revealed no northern or western mineral signatures indicative of glacial deposition, confirming human movement of bluestones from Wales and potentially Scotland. These findings challenge lingering glacial erratic theories and underscore prehistoric logistical prowess.

    Sarsen Sourcing Debates: Geochemical Controversies

    Sarsen stones, the massive sandstone uprights and lintels, have been a focal point of provenance studies. A scholarly exchange in Archaeometry highlighted methodological disagreements. In 2024, Anthony Hancock et al. reanalysed data from Nash et al.'s 2020 study, which identified West Woods in Wiltshire as the primary source. Hancock's team critiqued zirconium-normalised trace elements, favouring absolute concentrations and ratios, and proposed alternative origins for stone #58, such as Clatford Bottom or Piggledene, even suggesting possible glacial transport from Scandinavia.

    Nash and T. Jake R. Ciborowski responded in 2025, defending their approach by noting Hancock's reliance on weathering-susceptible mobile elements and inadequate handling of intra-site variability. They reaffirmed West Woods using multi-sample statistics, dismissing glacial ideas as geologically implausible. Hancock's subsequent reply upheld their methods, maintaining possibilities of diverse sources. This unresolved debate illustrates the complexities of geochemical sourcing in archaeology.

    Relatedly, a January 2025 study in Proceedings of the Prehistoric Society examined the Cuckoo Stone and Tor Stone, recumbent sarsens on the River Avon's banks. Portable X-ray fluorescence confirmed origins in West Woods, 20-25 kilometres north, with deliberate placement around 2940–2750 cal BCE, predating Stonehenge's main sarsen phase. Their intervisibility suggests a ceremonial 'portal', integrating Orcadian influences.

    Faunal Evidence: Networks and Logistics

    Isotopic analyses of animal remains illuminated prehistoric mobility. An August 2025 paper in the Journal of Archaeological Science studied a Neolithic cow tooth from Stonehenge's south entrance. Sequential strontium and lead sampling indicated Welsh origins, aligning with the monument's construction circa 2995–2900 BCE. This supports oxen from western Britain hauling bluestones, evidencing vast networks.

    Extending to the Bronze Age, a September 2025 study in Nature Ecology & Evolution analysed isotopes from animal bones in Wiltshire and Thames Valley middens (c. 1000–800 BCE). Pigs dominated, originating from Scotland, Ireland, and Wales, implying long-distance travel for feasts, while cattle and sheep were local. Stonehenge's landscape thus served as a communal hub.

    Landscape Archaeology: Pits, Boundaries, and Palaeoenvironments

    Geophysical surveys revealed expansive features. A November 2025 article in Internet Archaeology detailed Neolithic pits encircling Durrington Walls, 3 kilometres from Stonehenge. The Stonehenge Hidden Landscapes Project used magnetometry, ground-penetrating radar, and coring to confirm 16 man-made pits forming arcs, dated to the Late Neolithic via chemostratigraphy and ancient DNA. These suggest a massive ceremonial boundary, the largest in Britain.

    Palaeoenvironmental work in the Preseli Hills, published October 2025 in Environmental Archaeology, used pollen cores to depict a wooded Mesolithic-Neolithic landscape with gradual pastoral shifts. Cereal pollen from 3000–2200 BCE indicates sustained occupation post-bluestone quarrying.

    Astronomical Alignments: Lunar Perspectives

    Bournemouth University's project documented the 2024–2025 Major Lunar Standstill, capturing moonrises relative to Station Stones. Observations suggest Neolithic incorporation of lunar cosmology, beyond solar alignments, with publications anticipated.

    Methodological Innovations: Detecting Hidden Carvings

    A 2025 paper in Journal of Archaeological Science: Reports (PII: S1296207425001487) employed Difference of Gaussians, pseudo-depth mapping, and MeshNet to identify Early Bronze Age axe-head carvings on Stone 53, discovering 4 new, 10 potential, and 9 reinterpreted ones with 90.7% accuracy.

    Addressing lichen obscuration (covering 23% of surfaces), a July 2025 study in Results in Engineering developed lichen simulation and laser scan models to virtually remove Ramalina siliquosa, predicting hidden carvings non-invasively with 73.4% accuracy using adapted MeshNet. A related thesis integrated terahertz spectroscopy for lichen penetration, identifying optimal conditions.

    Chronological Modelling

    The 2024 Historic England report by Marshall et al. presents refined radiocarbon age models for Woodhenge at Durrington, Wiltshire, utilising Bayesian sequence modelling to date the timber monument's construction to 2635–2575 cal BC (95% probability), with the enclosing ditch and bank following in 2555–2505 cal BC (2% probability) or more likely 2495–2180 cal BC (93% probability), thereby clarifying its phased development and integration with nearby features such as Durrington Walls. Complementing this, Greaney et al.'s 2025 study in Antiquity refines the chronologies for the Flagstones circular enclosure and Alington Avenue long enclosure in Dorchester, Dorset, through 17 new radiocarbon measurements and Bayesian analysis, establishing Flagstones' construction at 3315–3130 cal BC (95% probability) and Alington Avenue predating it by 110–470 years (95% probability), with these dates pre-dating traditional estimates for henge-like structures by up to 285 years and highlighting early innovations in circular monument forms that bridge Early and Middle Neolithic traditions. These revised timelines underscore evolving ceremonial practices and potential connections to broader European networks, prompting a reassessment of monument sequences across the region.

    References

    Bevins, R.E., Pearce, N.J.G., Ixer, R.A., Scourse, J., Daw, T., Parker Pearson, M., Pitts, M., Field, D., Pirrie, D., Saunders, I. & Power, M.R., 2025. The enigmatic ‘Newall boulder’ excavated at Stonehenge in 1924: new data and correcting the record. Journal of Archaeological Science: Reports, 59, 105303. Available at: https://doi.org/10.1016/j.jasrep.2025.105303

    Clarke, A.J.I., Kirkland, C.L., Bevins, R.E. et al. A Scottish provenance for the Altar Stone of Stonehenge. Nature 632, 570–575 (2024).  Available at: https://doi.org/10.1038/s41586-024-07652-1

    Clarke, A.J.I. & Kirkland, C.L., 2026. Detrital zircon–apatite fingerprinting challenges glacial transport of Stonehenge’s megaliths. Communications Earth & Environment, 7(1), pp.1–12. Available at: https://doi.org/10.1038/s43247-025-03105-3

    Esposito, C. et al., 2025. Diverse feasting networks at the end of the Bronze Age in Britain (c. 900–500 BCE) evidenced by multi-isotope analysis. iScience, 28(10), 113271. Available at: https://doi.org/10.1016/j.isci.2025.113271

    Evans, J.A. et al., 2025. Sequential multi-isotope sampling through a Bos taurus tooth from Stonehenge, to assess comparative sources and incorporation times of strontium and lead. Journal of Archaeological Science, 180, 106269. Available at: https://doi.org/10.1016/j.jas.2025.106269

    Gaffney, V. et al., 2025. The perils of pits: Further research at Durrington Walls henge (2021–2025). Internet Archaeology, 69. Available at: https://doi.org/10.11141/ia.69.19

    Greaney, S., Marshall, P., Hajdas, I., Dee, M., et al., 2025. Beginning of the circle? Revised chronologies for Flagstones and Alington Avenue, Dorchester, Dorset. Antiquity. Available at: https://doi.org/10.15184/aqy.2025.28

    Hancock, A.J. et al., 2024. Stonehenge revisited: A geochemical approach to interpreting the geographical source of sarsen stone #58. Archaeometry, 67(2), pp.435–456. Available at: https://doi.org/10.1111/arcm.12999

    Harding, P. et al., 2025. Earliest movement of sarsen into the Stonehenge landscape: New insights from geochemical and visibility analysis of the Cuckoo Stone and Tor Stone. Proceedings of the Prehistoric Society, 91, pp.1–25. Available at: http://dx.doi.org/10.1017/ppr.2024.1

    Leong, G., Brolly, M. & Nash, D.J., 2025a. Novel approaches for enhanced visualisation and recognition of rock carvings at Stonehenge. Journal of Cultural Heritage, 75, pp.112–121. Available at 
    SSRN: https://ssrn.com/abstract=5126093 or http://dx.doi.org/10.2139/ssrn.5126093

    Leong, G., Brolly, M. & Nash, D.J., 2025b. Novel lichen simulation and laser scan modelling to reveal lichen-covered carvings at Stonehenge. Results in Engineering, 27, 106377. Available at: https://doi.org/10.1016/j.rineng.2025.106377

    Marshall, P., Chadburn, A., Hajdas, I., Dee, M. & Pollard, J., 2024. Woodhenge, Durrington, Wiltshire: Radiocarbon dating and chronological modelling. Historic England Research Report Series 94/2024. Available at: https://historicengland.org.uk/research/results/reports/94-2024

    Nash, D.J. & Ciborowski, T.J.R., 2025. Comment on: ‘Stonehenge revisited: A geochemical approach to interpreting the geographical source of sarsen stone #58’. Archaeometry, 67(3), pp.789–794. Available at: https://doi.org/10.1111/arcm.13105

    Parker Pearson, M. et al., 2024. Stonehenge and its Altar Stone: The significance of distant stone sources. Archaeology International, 27(1), pp.113–137. Available at: https://doi.org/10.14324/AI.27.1.13

    Silva, F., Chadburn, A. & Ellingson, E., 2024. Stonehenge may have aligned with the moon as well as the sun. The Conversation. Available at: https://theconversation.com/stonehenge-may-have-aligned-with-the-moon-as-well-as-the-sun-228133

    Spencer, D.E. et al., 2025. Prehistoric landscape change around the sources of Stonehenge’s bluestones in Preseli, Wales. Environmental Archaeology. Advance online publication. Available at: https://doi.org/10.1080/14614103.2025.2574741

    Thursday, 29 January 2026

    William Stukeley's 1730 Bible

    William Stukeley's 1730 Bible sold for £6500 today, a bit too rich for me;

    "William Stukeley's annotated 1683 edition of the Holy Bible, inscribed by him in 1730 and replete with his marginalia, stands as a seminal artefact in the history of British antiquarianism and the intellectual evolution of ideas surrounding ancient monuments like Stonehenge, offering an unparalleled window into the mind of an 18th-century scholar who seamlessly blended biblical literalism with emerging archaeological speculation; this personal copy, bound in two volumes and featuring handwritten notes, sketches, and explicit references to "Stonehenge" alongside passages such as 1 Kings 18:31—where Elijah rebuilds an altar with twelve stones representing the tribes of Israel—illustrates Stukeley's burgeoning theory that such scriptural altars paralleled the Druidic stone circles he observed at sites like Avebury and Stonehenge, positing them as post-diluvian temples erected by oriental colonies (likely Phoenicians) who brought patriarchal religion to Britain shortly after Noah's Flood; predating his influential 1740 publication Stonehenge, A Temple Restor'd to the British Druids by a decade, these annotations reveal the formative stages of his deluvian framework, where he interpreted prehistoric structures as evidence of a pure, ancient faith inherited from biblical patriarchs like Abraham, thereby challenging classical notions of British origins and contributing to the Romantic revival of Druid mythology that influenced later figures such as William Blake; moreover, the marginalia, including a stone circle illustration in Exodus and notes linking "Romans" and "Britain" in the Book of Joel, underscore Stukeley's role as a pioneering field archaeologist and clergyman whose work bridged theology, geology (as seen in his flood-based interpretations of fossils), and history, making this Bible not merely a religious text but a foundational document in the development of prehistoric studies in Britain."


    Description

    Stukeley (William).- Bible, English. The Holy Bible Containing the old Testament and the New, 1 vol. bound in 2, each with same engraved general title (dates evidently altered from 1682), divisional title to NT dated 1673, folding engraved map at start vol. 1 (laid down and repaired with some loss, manuscript notes to verso), 2 folding maps tipped-in to NT, woodcut initials, lacking The whole book of Psalms at end, both titles with ownership inscription "W: Stukeley MD. 1730" to verso, that of vol. 1 also with "Stamford" beneath, annotated by Stukeley throughout, including a few marginal illustrations, vol. 1 map and first few leaves repaired at inner-margin and loose, vol. 1 title chipped at edges, vol. 1 2K4 & 3G2 small hole affecting couple letters, trimmed close at head, sometimes into headline, annotations occasionally shaved at fore-edge, occasional light damp-staining, some foxing and light browning, later panelled calf, spines chipped with loss and lacking labels, rubbed and worn, upper covers detached, [ESTC R469361], Cambridge, John Hayes, 1683; and a biography of Stukeley (1985), 4to & 8vo (3)

    ⁂ William Stukeley (1687-1765), antiquary and natural philosopher. A significant influence on the later development of archaeology, he pioneered the scholarly investigation of the prehistoric monuments of Stonehenge and Avebury in Wiltshire. In 1718, he was elected a Fellow of the Royal Society and became the first secretary of the Society of Antiquaries of London. This copy contains a small marginal illustration of a stone circle in Exodus (F8v), "And Moses built an altar". Stukeley also references "Stonehenge" in the Book of Kings (2F3v), and "Romans" and "Britain" at the opening of the Book of Joel (3N1).